Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone.
نویسندگان
چکیده
A new approach for attaining sustained release of protein is introduced, involving a pore-closing process of preformed porous PLGA microspheres. Highly porous biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were fabricated by a single water-in-oil emulsion solvent evaporation technique using Pluronic F127 as an extractable porogen. Recombinant human growth hormone (rhGH) was incorporated into porous microspheres by a simple solution dipping method. For their controlled release, porous microspheres containing hGH were treated with water-miscible solvents in aqueous phase for production of pore-closed microspheres. These microspheres showed sustained release patterns over an extended period; however, the drug loading efficiency was extremely low. To overcome the drug loading problem, the pore-closing process was performed in an ethanol vapor phase using a fluidized bed reactor. The resultant pore-closed microspheres exhibited high protein loading amount as well as sustained rhGH release profiles. Also, the released rhGH exhibited structural integrity after the treatment.
منابع مشابه
Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline
Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lacti...
متن کاملPreparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline
Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lacti...
متن کاملLoading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres
Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days. Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....
متن کاملBiodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat
Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of appli...
متن کاملPegylated recombinant human epidermal growth factor (rhEGF) for sustained release from biodegradable PLGA microspheres.
Recombinant human epidermal growth factor (rhEGF) was conjugated with polyethylene glycol (PEG) to improve its physical stability during microencapsulation in biodegradable poly(lactic-co-glycolic acid) microspheres. rhEGF was conjugated with N-hydroxysuccimide (NHS)-derivatized methoxy-PEG (mPEG) of MW 2000 and 5000 under various reaction conditions to optimize the extent of pegylation. Pegyla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 112 2 شماره
صفحات -
تاریخ انتشار 2006